AVP induces myogenesis through the transcriptional activation of the myocyte enhancer factor 2.

نویسندگان

  • Bianca Maria Scicchitano
  • Lucia Spath
  • Antonio Musarò
  • Mario Molinaro
  • Sergio Adamo
  • Clara Nervi
چکیده

The neurohypophyseal nonapeptide Arg8 vasopressin (AVP) promotes differentiation of cultured L6 and L5 myogenic cell lines and mouse primary satellite cells. Here, we investigated the molecular mechanism involved in the induction of the myogenic program by AVP. In L6 cells, AVP treatment rapidly induces Myf-5, myogenin, and myocyte enhancer factor 2 (MEF2) mRNAs, without affecting the expression of known myogenic growth factors such as IGF-I, IGF-II, or their receptors. In the presence of cycloheximide, AVP up-regulates the expression of MEF2, but not of myogenin, indicating that the synthesis of a protein intermediate is not necessary for MEF2 induction. Notably, AVP treatment activates a calcium/calmodulin kinase signaling pathway that induces cytosolic compartmentalization of the histone deacetylase 4, a mechanism related to the transcriptional activation of MEF2. The activity of chloramphenicol acetyltransferase reporter constructs carrying the Myo184 and Myo84 fragments of the myogenin promoter is also induced by AVP. Mutation of the MEF2 site completely abolishes the response to AVP, whereas deletion of the E1 site present in pMyo84 does not impair this response. Together, these results show that AVP induces myogenic differentiation through the transcriptional activation of MEF2, a mechanism that is critical for myogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways.

Arg8-vasopressin (AVP) promotes the differentiation of myogenic cell lines and mouse primary satellite cells by mechanisms involving the transcriptional activation of myogenic bHLH regulatory factors and myocyte enhancer factor 2 (MEF2). We here report that AVP treatment of L6 cells results in the activation of calcineurin-dependent differentiation, increased expression of MEF2 and GATA2, and n...

متن کامل

Vasopressin-dependent myogenic cell differentiation is mediated by both Ca/calmodulin-dependent kinase and calcineurin pathways

Arg-vasopressin (AVP) promotes the differentiation of myogenic cell lines and mouse primary satellite cells by mechanisms involving the transcriptional activation of myogenic bHLH regulatory factors and myocyte enhancer factor 2 (MEF2). We here report that AVP treatment of L6 cells results in the activation of calcineurin-dependent differentiation, increased expression of MEF2 and GATA2, and nu...

متن کامل

PC4/Tis7/IFRD1 Stimulates Skeletal Muscle Regeneration and Is Involved in Myoblast Differentiation as a Regulator of MyoD and NF-κB*

In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes d...

متن کامل

Arginine-vasopressin induces differentiation of skeletal myogenic cells and up-regulation of myogenin and Myf-5.

The neurohypophyseal nonapeptide arginine8-vasopressin (AVP) induces phosphoinositide turnover and calcium and pH changes in skeletal myogenic cells in culture. In order to investigate the effect of AVP on skeletal myogenesis, we examined the effect of this hormone on proliferating mononucleated L6 myoblast cultures. Addition of AVP to the medium resulted in the formation of much larger myotube...

متن کامل

Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D.

Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular endocrinology

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2002